
CS 710: Complexity Theory Date: Feb. 8th, 2024

Lecture 6: Random Walk for USTCONN (Continued)

Instructor: Jin-Yi Cai Scribe: Hao Lin

1 Outline

Remember that last lecture’s scribe, we have left two question:

• is θijuv = 1, ∀i, j, u, v in a one-dimensional finite chain?

• does this hold for all graphs?

We will show that θijuv = constant ≤ 1 for any given graph G = (V,E), and this along with

the Markov’s inequality give a one-sided any small ε-error randomized log space algorithm for the

problem USTCONN.

2 General Case for Random Walk on ij-commute Path

Theorem 1. θijuv = θijuv′

Proof. By definition,

θijuv =
∑
k

E[Yk = u ∧ Yk+1 = v]

=
∑
k

Pr[Yk = u] · Pr[Yk+1 = v|Yk = u]

=
∑
k

Pr[Yk = u] · 1

deg(u)

we see that this formula is irrelevant to the vertex v, so we prove it.

Lemma 1. There exists an ij-commute path CR that rearrange the random variables in the ij-

commute path C such that all random variables have a one-to-one mapping and the transition is

valid.

Proof. The outer circle in the graph shows the original path C, where it starts from node ifirst, all

the way through node ilast (possibly ifirst = ilast), and there is no existence of node i afterwards

until reaching the terminal point ifirst again. The similar definitions for jfirst and jlast hold.
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Now the amazing construction is that let us define CR to be a one-to-one mapping for C, except

that

• the nodes being visited in C are now arranged in the reverse direction

• the starting node become i′first = ilast

Just as shown in the graph, we can see that amazingly CR also follows the ij-commute property.

ifirst

ilast

jfirst

jlast

i′last

i′first

j′last

j′first

Theorem 2. θijuv = θijvu

Proof. The probability to get the path CR is the same as C, since

Pr[C] =
∏
i

Pr[Yi+1|Yi] =
∏
i

1

deg(Yi)
= Pr[CR]

We also have the number of occurrence of count({u, v}) the same as count({v, u}) in the same

path C, and hence the same for both C and CR.
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This leads to the conclusion since

θijuv =
∑
C

Pr[C] · count({u, v})

θijvu =
∑
CR

Pr[CR] · count({u, v})

Theorem 3. θijuv = θijij = constant ≤ 1

Proof. By applying the theorem above alternatively, we directly have θijuv = θijij = θiju′v′ =

constant.

For any graph G, we have θijij ≤ 1 with similar proof as in last lecture on a one-directional

semi-finite chain.

We can see the proofs are so charming as the core of the proof is simply the rearrangement of

all nodes in a random walk, but still preserves the ij-commute property.

3 USTCONN

Lemma 2. The expected length of random walk E[W ] ≤ 2|E|

Proof. Since each edge may have a chance to be traversed, we can relax E[W ] =
∑

(u,v)∈E θijuv +

θijvu ≤ 2|E|

Theorem 4. For a random walk path C in an undirected graph G = (V,E), the expected length

to cover all the nodes at least once should no be no greater than 4|V | · |E|.

Proof. For an undirected graph G = (V,E), we can have a spanning tree T , and performing a

depth-first-search as shown in the figure, but with random walk.

1

2

4 5

3

6 7

Therefore, we know that the expected number of steps T to perform such search equals to the

summation of the expected number of steps Tij for all i, j on the path of such traversal. While

Tij < θijij , we have T < 2|V | · E[W ] < 2|V | · 2|E| = 4|V | · |E|.
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Definition 1. USTCONN is a GAP but on an undirected graph.

Theorem 5. USTCONN can be solved with at most
(
1
2

)n
one-sided error by running a random

walk for n times, with at least length 8|V | · |E|, starting from node s.

Proof. By Markov’s inequality saying that

Pr[X ≥ a] ≥ E[X ≥ a]

a

we have Pr[W ≥ 8|V | · |E|] ≥ 1
2 .

This implies that if we run a random walk with length no smaller than 8|V | · |E|, we have more

than half the chance to cover all the nodes, and hence we have at most half the chance making a

false negative statement (falsely claiming that there does not exist a path from s to t).

By applying this algorithm n time, we get the conclusion.

Corollary 1. USTCONN can be solved with randomized algorithm with arbitrarily small one-

sided error in log space complexity.

Proof. Since during the random walk we don’t need to record any path, but simply record several

pivot nodes, including current node, s and t, we can solve it in log space.

Now, we can somehow answer the question raised in last lecture. Compared to GAP, USTCONN

is expected to be solved more efficiently. As we know GAP can be solved in log space non-

deterministically, now we somehow reach a better space complexity, that is USTCONN can be

solved in log space randomly.

There exists a derandomization method that can solve USTCONN in log space deterministically,

which may be covered in the future lectures. Overall, we can see that for this particular problem,

an undirected graph has a lower space complexity than directed graph assuming NL ̸= L.
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