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Lecture 5: Random Walk for USTCONN

Instructor: Jin-Yi Cai Scribe: Hao Lin

1 Introduction

We have talked about the GAP (directed Graph Accessibility Problem) which can be solved by

NDTM using log n space, i.e. GAP ∈ NL. It is somehow trivial that the undirected version, which

is named as USTCONN, should be no more difficult than GAP (as undirected graph can be turn

into a directed graph).

This raises a question: can we solve this problem more aggressively, in deterministic log space,

i.e. USTCONN ∈ L? By saying ”aggressively”, it is based on the assumption that L ⫋ NL whilst

if one can prove L = NL, then GAP and USTCONN are of the same difficulty to solve in terms of

space complexity.

Or, let us take one step back: can we solve it using deterministic log space, but with randomized

methods to approximate it? We will show that the answer is yes with one-sided error. The

intermediate results are charming as well.

2 Random Walk

Definition 1. We focus on the symmetric random walk on an undirected graph G = (V,E), to be

a stochastic path {Yi}i∈N+ , where Yi = j is a random variable representing node j is visited at i-th

step, with the transition probability

Pr[Yi+1|Yi] =

{
1

deg(Yi)
(Yi, Yi+1) ∈ E

0 otherwise

Let us begin with a one-dimensional finite chain. We start at node 1, and the random walk

stops at node n.

Example: For this specific example, n = 5, and suppose we are now at node 2, so it has p = 0.5

probability to reach node 1 and 1− p = 0.5 to reach 3 as well.
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2.1 Hitting Time for the One-dimensional Finite Chain

Definition 2. Ti is the number of steps spent at node i

Ti =
∞∑
j=0

Xij , Xij =

{
1 Yj = i

0 otherwise

For simplicity, we omit the constraints on the length should be no smaller than the subscription

j, and similar for the rest in this scribe.

Proposition 1. The expectation ti, for 2 ≤ i ≤ n− 2,

ti = E[Ti] =
∞∑
j=0

Xij =
∑
j≥0

Pr[Yj = i]

=
∑
j≥1

Pr[Yj−1 = i− 1] · Pr[Yj = i|Yj−1 = i− 1]

+ Pr[Yj−1 = i+ 1] · Pr[Yj = i|Yj−1 = i+ 1]

For 3 ≤ i ≤ n− 2,

ti =
1

2

[∑
j′≥0

Pr[Y ′
j = i− 1]

+
∑
j′′≥0

Pr[Y ′′
j = i+ 1]

]
=
1

2
(ti−1 + ti+1)

Therefore, we have ti =


t1 = n− 1

ti = 2(n− i) 2 ≤ i ≤ n− 1

tn = 1

Claim 1. The sum of expectation of the number of steps spent at each node is the expected hitting

time from node 1 to node n with the random walk.

We will show this after we defining the hitting time as follows and show its equivalence.

Definition 3. Yi,j is a random variable that equals to the number of steps for a random walk path

C, from node i to j.

hi,j = E[Yi,j ], which is called the hitting time for a random walk from node i to j.

Theorem 1. For a one-dimensional finite chain, the hitting time from node 1 to node n is h1,n =

(n− 1)2.
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Proof. First, by definition, we have Yi−1,i+1 = Yi−1,i + Yi,i+1,∀1 < i < n, then we can deduce that

Y1,n = Y1,2 + Y2,3 + · · ·+ Yn−1,n.

By linearity of expectation, we have h1,n = h1,2 + h2, 3 + · · ·+ hn− 1, n.

By definition, we have hi,i+1 =
1
2 · 1 +

1
2(1 + hi−1,i+1), ∀1 < i < n, since when we are on node i,

we have two choices with equal probability: moving right to i+ 1, or moving left to i− 1.

We also have hi−1,i+1 = hi−1,i + hi,i+1. Combining these two equations, we have hi,i+1 =

hi− 1, i+ 2. Since h1,2 = 1, we have h1,n = (n− 1)2.

Here is the proof of the claim.

Proof. The above claim is easily proved by adding ti up and gives to (n− 1)2.

We can see that the expected time traveling between two nodes, can be calculated via a direct

expansion of definition, or by the summation of the visiting number of each node. These results are

highly dependent on the assumption that each step’s choice Yi in the random walk is identically

independent distributed (i.i.d).

2.2 Random Walk on ij-commute Path

Definition 4. A path C = Yi is called ij-commute if and only if for i ̸= j, Y1 = i and there

exists an index k < n such that Yk = j and Y ′
k ̸= j,∀k′ < k, and beyond this, Yn = i with

Y ′′
k ̸= i,∀k′′ < n ∧ k′′ > k′.

Definition 5. For a random walk, Cijuv is a random variable that counts the number of existence

of directed edge −→uv in an ij-commute path C.

θijuv = E[Cijuv]

Corollary 1. θijij in the one-dimensional finite chain is 1 if (i, j) ∈ E.
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Proof. Since edge (i, j) ∈ E, there must exist 1 < k < n such that Yk = j in this ij-commmute

path C, and Yk−1 = i. We know that θijij ≥ 1.

Now, let us prove it by contradiction. Suppose θijij > 1. This means that there exists these

indices 1 < k < k′ < k′ + 1 < n, such that Yk−1 = i, Yk = j, Yk′ = i, Yk′+1 = j. However, by

definition of ij-commute, the path should stop at k′, but is less than n, which is a contradiction.

Therefore, θijij = 1.

Corollary 2. θijuv in the one-dimensional finite chain is 1 if u = v + 1, v = j = i+ 1.
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Proof. By definition, θijuv = Pr[{v, u} is crossed] · E[Cijuv|{v, u} is crossed].

Since j must be reached, the former probability goes to 1
2 . The latter expectation is exactly

the same regardless of how many times {v, u} has been crossed (at least once). Each time {v, u}
is crossed, it has to pass the other direction {u, v} once, so if we denoted this expectation as x, we

have a ’fixed point’ equation x = 1 + 1
2x, so x = 2. Therefore, θijuv = 1.

This gives an interesting guess that for a one-dimensional finite chain, will θijuv = 1,∀i, j, u, v?
Or even further, does this hold for all graphs? The answers are given in the next lecture scribe

and we will see these results gives birth to a randomized log space algorithm for the USTCONN

problem.
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