CS 710: Complexity Theory Date: Feb. 6th, 2024
Lecture 5: Random Walk for USTCONN

Instructor: Jin-Yi Cai Scribe: Hao Lin

1 Introduction

We have talked about the GAP (directed Graph Accessibility Problem) which can be solved by
NDTM using logn space, i.e. GAP € NL. It is somehow trivial that the undirected version, which
is named as USTCONN, should be no more difficult than GAP (as undirected graph can be turn
into a directed graph).

This raises a question: can we solve this problem more aggressively, in deterministic log space,
i.e. USTCONN € L? By saying "aggressively”, it is based on the assumption that L & NL whilst
if one can prove L = NL, then GAP and USTCONN are of the same difficulty to solve in terms of
space complexity.

Or, let us take one step back: can we solve it using deterministic log space, but with randomized
methods to approximate it? We will show that the answer is yes with one-sided error. The
intermediate results are charming as well.

2 Random Walk

Definition 1. We focus on the symmetric random walk on an undirected graph G = (V, E), to be
a stochastic path {Y;};en+, where Y; = j is a random variable representing node j is visited at i-th
step, with the transition probability

1
deg(Y;) Y:,Yi cF
PrYi|Y;] = { 2809 (Yi H—.l)
0 otherwise

Let us begin with a one-dimensional finite chain. We start at node 1, and the random walk
stops at node n.

Example: For this specific example, n = 5, and suppose we are now at node 2, so it has p = 0.5
probability to reach node 1 and 1 — p = 0.5 to reach 3 as well.
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2.1 Hitting Time for the One-dimensional Finite Chain
Definition 2. T; is the number of steps spent at node ¢
> 1 Y=
T — Xii, Xii = J
' ]z% v {O otherwise

For simplicity, we omit the constraints on the length should be no smaller than the subscription
4, and similar for the rest in this scribe.

Proposition 1. The expectation t;, for 2 <i <n — 2,

oo
ti=E[T] =) Xiy=> Prly;=1
Jj=0 Jj=0
= PrlYa=i—1]-Pr[Y;=ilY; 1 =i—1]
j>1
—l—PT[Y};l =14+ 1] . PT‘[Y} = ’L'|ij‘,1 =14+ 1]
For 3 <i<n-—2,
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:i(ti—l +tiv1)
tl =n-—1
Therefore, we have t; = ¢ t; =2(n—1i) 2<i<n-—1
t, =1

Claim 1. The sum of expectation of the number of steps spent at each node is the expected hitting
time from node 1 to node n with the random walk.

We will show this after we defining the hitting time as follows and show its equivalence.

Definition 3. Y; ; is a random variable that equals to the number of steps for a random walk path
C, from node i to j.

hi; = E[Y; ;], which is called the hitting time for a random walk from node ¢ to j.

Theorem 1. For a one-dimensional finite chain, the hitting time from node 1 to node n is hy, =
(n—1)=2



Proof. First, by definition, we have Y;_1 ;41 = Y;_1,; + Y;;41,V1 <4 < n, then we can deduce that
}/1,77, = }/172 + }/2,3 + -+ Yn—l,n-

By linearity of expectation, we have hyi, = hi2+h2,3+---+hn—1,n.

By definition, we have h; ;41 = % -1+ %(1 + hi—1,41), V1 < i < n, since when we are on node 7,
we have two choices with equal probability: moving right to ¢ + 1, or moving left to i — 1.

We also have hi—1i+1 = hi—1,i + his+1. Combining these two equations, we have h; ;11 =
hi—1,i+ 2. Since h; 2 =1, we have hy, = (n — 1)2. O
Here is the proof of the claim.

Proof. The above claim is easily proved by adding ¢; up and gives to (n — 1)2. O

We can see that the expected time traveling between two nodes, can be calculated via a direct
expansion of definition, or by the summation of the visiting number of each node. These results are
highly dependent on the assumption that each step’s choice Y; in the random walk is identically
independent distributed (i.i.d).

2.2 Random Walk on ij-commute Path

Definition 4. A path C = Y; is called ij-commute if and only if for i # j, Y1 = i and there
exists an index k < n such that ¥, = j and Y] # j,VK' < k, and beyond this, Y;, = i with
Y/ #i,VE" <nAK'" > F.

Definition 5. For a random walk, Cjjy, is a random variable that counts the number of existence
of directed edge w0 in an ij-commute path C.

Oijuo = E[Cijuo]
Corollary 1. 6;;;; in the one-dimensional finite chain is 1 if (z,5) € E.
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Proof. Since edge (i,j) € E, there must exist 1 < k < n such that Y, = j in this ij-commmute
path C, and Y;_; = i. We know that 6;;;; > 1.

Now, let us prove it by contradiction. Suppose 6;;;; > 1. This means that there exists these
indices 1 < k < k' < k' +1 < n, such that Y,y =, Y, = j, Y = i, Y 1 = j. However, by
definition of ij-commute, the path should stop at k', but is less than n, which is a contradiction.
Therefore, ijij = 1. O

Corollary 2. 6;jy, in the one-dimensional finite chainis 1 ifu =v+1,v =7 =14+ 1.



Proof. By definition, 0;j,, = Pr[{v,u} is crossed] - E[Cjjuo|{v,u} is crossed].

Since j must be reached, the former probability goes to % The latter expectation is exactly

the same regardless of how many times {v,u} has been crossed (at least once). Each time {v,u}
is crossed, it has to pass the other direction {u, v} once, so if we denoted this expectation as x, we
have a ’fixed point’ equation x = 1 + %x, so = 2. Therefore, 0;;,, = 1.

O]

This gives an interesting guess that for a one-dimensional finite chain, will 6;;,, = 1,V4, j,u, v?
Or even further, does this hold for all graphs? The answers are given in the next lecture scribe
and we will see these results gives birth to a randomized log space algorithm for the USTCONN
problem.



