
CS 710: Complexity Theory Date: Apr. 2nd & 4th, 2024

Lec. 19, 20: Randomness: PTM, Hashing, MAXCUT, Isolation Lemma,
BPP ⊆ Σp

2 ∩ Πp
2

Instructor: Jin-Yi Cai Scribe: Hao Lin

1 Overview

In these two lectures [Cai03], we are going to talk about computational complexity on random

algorithms. Here are some intriguing questions:

• Can we use computation models to capture random algorithms?

• What are randomness? Does there exist true randomness?

• Is derandomization universal? (i.e. to transform every random algorithm into a deterministic

one)

• Does randomness give more power to simplify the complexity of problems? (Randomness vs.

Hardness)

• What are the relationships between probability complexity classes and other classes we have

visited?

We will also cover some preliminaries on Inequalities and Bounds and Abstract Algebra in

Appendix.

2 Probabilistic Turing Machine and its Complexity Classes

A probabilistic Turing machine (PTM) syntactically is equivalent to a non-deterministic Turing

machine (NTM) where there are also two transition functions δ1 and δ2. The difference is: for

NTM, it magically guess the best transition function to pick at each point that eventually leads to

an accepted state if exists; for PTM, it pick either one of them randomly according to a probabilistic

function (can be uniform), which can lead to ”wrong” results.

Therefore, even for the same input and finite state control, it may give different results for

various runs, or even not halt for certain runs. Then, how can we say if one language is accepted by

this PTM? It turns out the definition is different from what we have encountered before, requiring

some promises (which are not decidable, but we will not cover it here). It is related to the probability

of getting the input accepted.

There are three kinds of basic probabilistic complexity classes that capture: two-sided error

(BPP), one-sided error (RP) and zero error (ZPP). PP is something different and will be covered

at the end of this section.

1

Definition 1 (BPP) BPP is called the bounded-error probabilistic polynomial-time class. A lan-

guage L is said to be in BPP iff

x ∈ L =⇒ Pr[x is accepted by PTM] ≥ 2

3

x ̸∈ L =⇒ Pr[x is accepted by PTM] ≤ 1

3

Instead of saying the probability of rejecting by PTM in the negative case, we say the probability

of being accepted is low. This is simply because there exists situations that PTM may not even

halt.

Notice that the predicate above can be more mathematically replaced by D(x, y) = 1 defined

as usual where y is the path in the PTM, D(·, ·) is a boolean predicate.

Definition 2 (RP) RP is called the randomized polynomial time classes, and its name is given

because it is the earliest such classes. A language L is said to be in RP iff

x ∈ L =⇒ Pr[x is accepted by PTM] ≥ 1

2

x ̸∈ L =⇒ Pr[x is accepted by PTM] = 0

Example: Randomized primality testing is in coRP, which means it will never wrongly claim

a primary number to be composite; while a composite number have a chance to be correctly

determined if we can find one of its factor in polynomial trials. ⊠

Remark 1 Notice again that the constant 1
2 is also a flexible constant, which can be amplified

towards both sides exponentially.

Definition 3 (ZPP) ZPP stands for zero-error probabilistic polynomial classes. The predicate D

is now a polynomial time computable function {0, 1}∗ × {0, 1}∗ −→ {0, 1, ?}. A language L is said

to be in ZPP iff

x ∈ L =⇒ ∀y,D(x, y) = {1, ?} ∧ Pr[D(x, y) = 1] ≥ 1

2

x ̸∈ L =⇒ ∀y,D(x, y) = {0, ?} ∧ Pr[D(x, y) = 0] ≥ 1

2

In other words, the PTM will at least not make false negatives or positives.

2

2.1 Amplification of BPP

The number 2
3 is some pretty flexible constant that we can then replaced to be at least ε = 1

nc

greater than 1
2 . And by constructing a new PTM M ′ which runs the original PTM M 2m+1 times

and accepts if at least m+1 times M accepts it, we can amplify this threshold to accept any input

with exponentially small error e−q(n).

More precisely, let Xi be the 0-1 random variable of the i-th outcome of M , p be the probability

to accept x by M , S =
∑

Xi − p. Suppose x ̸∈ L, then p ≤ 1
2 − ε, we have

Pr[M ′ accepts x] = Pr[
∑

Xi ≥ m+ 1] ≤ Pr[S ≥ (2m+ 1)ε] ≤ e−q(n)

The last inequality comes from the Chernoff bound (see Appendix A) and a carefully selected

large m.

Remark 2 It is the Chernoff bound showing that polynomial repetition gives exponentially small

error, which further serves for many non-trivial results between randomness and determinism

worked under polynomial time bound.

Remark 3 The ε cannot be exponentially small, since otherwise the gap between positive and

negative cases are too small to amplify them with polynomial repetitions.

3 Universal Hashing Function Family

Here goes the topic on a formal definition of the widely seen and used hash function, which will also

play a great role in random algorithms, derandomization and the proof of probabilistic complexity

classes, notably the isolation lemma.

Definition 4 (UHF Family) The universal hashing function family is the set {hs : U → T}s∈S ,
where S is an index set, U and T are finite sets. Furthermore, the USF family has to have the

following ”randomness” property: if ∀x, y ∈ U,∀α, β ∈ T, x ̸= y, then

Pr
s∈S

[hs(x) = α ∧ hs(y) = β] =
1

|T |2

Remark 4 The definition is based on the probability over USF Family, not a single USF, since

the behavior for a single USF is determined, whereas we are looking at the collaborative behavior.

Theorem 1 (Pairwise independence of UHF Family) If we fix x, but treat s as the variable,

then we define the random variable Zx(s) = hs(x). We have {Zx}x∈U is pairwise independent and

uniformly distributed random variables on T .

Proof. Notice that if the hashing function is uniformly onto T , implies that we want to show

∀x ∈ U,α ∈ T, Prs∈S [Zx(s) = α] = 1
|T | .

3

This is obtained by ∀x, y ∈ U, y ̸= x,∀α, β ∈ T , we have

Pr
s∈S

[Zx(s) = α] =
∑
β

Pr
s∈S

[Zx(s) = α ∧ Zy(s) = β] =
1

|T |

Example: ax+ b forms a UHF family for a, b ∈ Z/p, where p is a prime, and Z/p = 0, 1, . . . , p− 1

with + and · form a finite field. ⊠

Proof. Let us treat a and b as the variables in a linear system

ax+ b = α

ay + b = β

Since the determinant of this linear system is

det

(
x 1

y 1

)
= x− y ̸= 0

the solution to a and b is unique, and hence ∀x, y ∈ U,∀α, β ∈ T, x ̸= y, then

Pr
s∈S

[hs(x) = α ∧ hs(y) = β] =
1

|T |2

Example: This can be generalized to any finite field GF(pn). ⊠

4 MAXCUT

We know that the MINCUT problem has a dual problem MAXFLOW, which is found to have

polynomial solution, and hence it is in P.

However, another counter part is the MAXCUT, which is proved to be NP-Hard from e.g.

3-SAT. Here we will show the ”power” (or probably no extra ”power”) of random algorithm in

approximation to one of the NP-Hard problems, i.e. MAXCUT, by comparing with deterministic

approximation and progressively improving the results.

Definition 5 (MAXCUT) Give a graph G = (V,E), we can make a disjoint vertex partition V =

V1 ⊔ V2. A cut is defined to be the edge subset C ⊆ E such that it contains all edges lying as the

bridge between V1 and V2. MAXCUT is defined to be the maximum of the cut size |C|.

4

|C∗| = max
V1

|C|

Algorithm 1 1/2 Approximation using Deterministic Algorithm

Let us partition the set E into n disjoint subsets according to vertex indices, Ei = {(vi, vj) | j ≥ i}.
The algorithm iteratively forms V1 and V2 by categorizing vertex starting from n down to 1. At

each vertex i, we put it in V1 if |{vj | vj ∈ V2 ∧ (vi, vj) ∈ Ei}| ≥ |Ei|/2; otherwise, put it in V2.

1: procedure DetApproxMAXCUT(G = (V,E))

2: Ei = {(vi, vj) | j ≥ i}
3: V1 ← ∅, V2 ← ∅
4: for i← n to 1 do

5: if |{vj | vj ∈ V2 ∧ (vi, vj) ∈ Ei}| ≥ |Ei|/2 then

6: V1 ← V1 ∪ vi
7: else

8: V2 ← V2 ∪ vi
9: end if

10: end for

11: return V1, V2

12: end procedure

Proof. For each vertex i, let Ci = {vj | (vj ∈ V −Vb, vi ∈ Vb)∧ (vi, vj) ∈ Ei}, by definition Ci ⊆ Ei

and Ci ⊆ C, |Ci| ≥ |Ei|/2. Since all Ei are disjoint partitions of E, we have

|C| =
∑
i

|Ci| ≥
∑
i

|Ei|/2 ≥
∑
i

|C∗
i |/2 = |C∗|/2

The ”power” of the randomized algorithm can be its astonishing elegance:

5

Algorithm 2 1/2 Approximation using a Simple Randomized Algorithm

1: procedure RandApproxMAXCUT(G = (V,E))

2: V1 ← ∅, V2 ← ∅
3: for i← 1 to n do

4: if p ∼ U(0, 1) > 0.5 then

5: V1 ← V1 ∪ vi
6: else

7: V2 ← V2 ∪ vi
8: end if

9: end for

10: return V1, V2

11: end procedure

Proof. For each edge eij ∈ C, the probability is

Pr[vi ∈ Vb ∧ vj ∈ V − Vb] =
∑
b

Pr[vi ∈ Vb] · Pr[vj ∈ V − Vb] = 1/2

so E[|C|] ≥ E[|E|]/2 ≥ E[|C∗|]/2.

4.1 Derandomizing MAXCUT Algorithm using Universal Hashing Function

The procedure is fairly simple: take the least bit of the hashed value for categorization. Specifically,

let us pick k such that 2k−1 < |V | ≤ 2k, which forms a GF [2k], and hence our UHF family under

ax + b for a, b ∈ GF [2k]. For each vertex vi, we apply all the hash functions to x = i to get the

least bit, and take the majority on the least bit.

There are O(|V |2) different hash functions in this UHF family, and hence overall is still a

polynomial deterministic algorithm. In addition, it can be accelerated by parallel computation.

Remark 5 Notice that all derandomization on discrete finite seeds can be done in this manner

according to Nisan and Wigderson [NW94], with an exponential slow down in terms of hashing

function bit length (e.g. here is k instead of |V |).

4.2 Goemans-Williamson Algorithm: An 87.8% Approximation to MAXCUT

We will reduce this problem to another NP-Hard problem, the quadratic programming problem, and

then relax it to semi-definite programming, combined with randomization, to get an approximation

for about 12% error.

Let us assign xi = 1 if vi is in V1, and xi = −1 otherwise. Then the max cut become a quadratic

programming:

6

max
{xi}⊆{−1,1}n

1

4

∑
eij

(xi − xj)
2

s.t.x2i = 1

Then linearize it with the “intention” that yij = xixj , and we find a relaxed problem

max
{yij∈{−1,1}n

1

4

∑
eij

(yii + yjj − 2yij)

s.t. yii = 1

vTY v ≥ 0, ∀v ∈ Rn

Notice that this is not equivalent to the original problem any more, since in the original problem,

the rank of Y = XXT should be 1 since we have a rank 1 matrix of X, while here it may be not.

Except for the rank, the relax Y preserve all the properties: symmetric and positive semi-definite.

It is known that there exists polynomial time to solve semi-definite programming, which we will

not cover here but just assume it works.

Therefore, we can find Y ∗ such that we maximize the value, let say M∗. As we know Y ∗ = UUT ,

where U =

u1
u2
. . .

un

, where ui ∈ Rn. We have M∗ = 1
4

∑
eij
||ui − uj ||2. Now, as we know Y ∗ is

not likely to be rank 1, it is less likely to find a correspondent solution given U . However, we can

perform a random strategy to determine X based on U , with a slight deviation from the upper

bound M∗ (though this upper bound may not be strict).

The random strategy is fairly simple: random choose a hyperplane Π to split ui into two

partition, and hence the cut.

How good is this partition? The cut size is then M =
∑

eij
Pr[Π separates ui, uj]. With the

help of simple geometry, we know Pr[Π separates ui, uj] = θij/π, and ||ui− uj ||2 = 4 sin2 θij/2. So,

we have:

M

M∗ =
θij

π sin2 θij/2
= f(θij)

fmin ≈ f(2.33) ≈ 0.878

Therefore, this Goemans-Williamson algorithm achieves at least 87.8%-approximation to the

optimal value.

7

5 Isolation Lemma

Back to the abstract properties and theorems, we continue to discover the power of universal hashing

function family: the UHF family behaves somehow randomly according to the definition, whereas

it only takes 2n bits.

How can we utilize this to do something more than the derandomization we have just seen?

Approximate the size of a set.

The idea is if the domain of UHF is too small compared to the range, the “random” mapping

will most likely to be a one-on-one, i.e. no “collision”. On the other hand, if the domain is too big

compared to the range, most of the value will be squeezed and map onto the same value, i.e. many

“collisions”. We call S in the first case “thin”, in the second case “fat”.

Definition 6 Let H be the UHF family, with each UHF h : S → T . x, y ∈ S is said to be a

collision under h if h(x) = h(y).

h is said to isolate x if ∀y ∈ S, x ̸= y, h(x) ̸= h(y).

h is said to isolate S if ∀x ∈ S, h isolates x.

H is said to isolate x if ∃h ∈ H, h isolates x.

H is said to isolate S if ∀x,∃h ∈ H, h isolates x.

Theorem 2 (Isolation Lemma) Let H be the UHF family, with each UHF h : S → T , and pick

Hr = {h1, . . . , hr} randomly from H.

(1) If |S| ≥ r|T |, then
Pr
Hr

[Hr isolates S] = 0

(2) If |S|r+1 ≤ |T |r, then

Pr
Hr

[Hr isolates S] > 1− |S|
r+1

|T |r

Proof. In case (1), S is “fat”. Each h can isolate at most |T | − 1 elements by performing a one-

to-one mapping on the first |T | − 1 elements and dumping the remained elements to a single value

|T |. So, Hr can isolate at most r(|T | − 1) elements. No Hr can isolate S when |S| ≥ r|T |.

In case (2), S is “thin”. We prove the converse situation where Hr fails to isolate S. For any

x ∈ S

Pr
h∈H

[h does not isolate x] ≤
∑

y∈S−{x}

Pr
h∈H

[x collides with y under h]

|S|
|T |

8

Then we have a collective behavior

Pr
Hr∈H

[Hr does not isolate x] <

(
|S|
|T |

)r

Pr
Hr∈H

[Hr does not isolate S] <
|S|r+1

|T |r

6 Sipser–Lautemann Theorem: BPP ⊆ Σp
2 ∩ Πp

2

Let us take a look at how isolation lemma can be used to prove a non-trivial theorem.

Sipser first made a significant contribution to unveil the connection between PTM and PH,

showing that BPP ⊆ PH. Then, Lautemann improved the bound to be BPP ⊆ Σp
2 ∩Πp

2.

Theorem 3 BPP ⊆ Σp
2 ∩Πp

2

Proof. Since BPP is symmetric and hence closed under complement, we only need to prove BPP ∈
Πp

2.

With the amplification of BPP, we can have L ∈ BPP such that given a polynomial computable

predicated D(·, ·), for any input x ∈ {0, 1}n,

x ∈ L⇔ Pr
y∈{0,1}m

[D(x, y) = 1] ≥ 1

2

x ̸∈ L⇔ Pr
y∈{0,1}m

[D(x, y) = 1] ≤ 1

4m

W.o.l.o.g, let us assume m be the power of 2, pick r = m, |T | = 2m/(2m). Let the witness set

Wx = {y | D(x, y) = 1}.

If x ∈ L, we have |Wx| ≥ 2m−1 = r|T |. By isolation lemma, no Hr can isolate Wx.

If x ̸∈ L, isolation lemma gives that PrHr [Hr isolates Wx] ≥ 1− 1/(4m).

In particular, let us take the x ̸∈ L case,

x ̸∈ L⇔ ∃h1, . . . , hr[Hr isolates x]

⇔ ∃h1, . . . , hr∀y ∈Wx∀y′ ∈Wx − {y}[h1(y) ̸= h1(y
′) ∨ · · · ∨ hr(y) ̸= hr(y

′)]

So, L ∈ Πp
2.

9

Appendix

A Preliminary Inequalities and Bounds

The Markov’s inequality connects the CDF (cumulative density function) of the tails to the expec-

tation.

Theorem 4 (Markov’s Inequality) Let X ≥ 0, and 0 ≤ E[X] <∞, then

Pr[X ≥ a] ≤ E[X]

a

The Chebyshev’s inequality concerns on the deviation to the expectation.

Theorem 5 (Chebyshev’s Inequality)

Pr[|X − E[X]| ≥ a] ≤ Var[X]

a2

Proof. By expanding the definition Var[X] = E[(X−E[X])2] = E[X2]−E[X]2 and using Markov’s

inequality.

The Chernoff bound takes a step more forward, by concerning on the deviation of the sum of n

i.d r.v. to the expectation.

Theorem 6 (Chernoff Bound) Let Xi ∈ {−1, 1} with equal probability, and let Sn =
∑

Xi, we

have

Pr[S ≥ a] ≤ e−a2/2n

Proof. The proof starts from the trick of computing the expectation of the eλXi , and hence

E[eλXi] = eλ+e−λ

2 = coshλ ≤ eλ
2/2. The latter inequality comes from the Taylor expansion.

And then goes the Markov’s inequality and also the monotone property of en:

Pr[Sn ≥ a] ≤ Pr[eλSn ≥ eλa] ≤ E[eλSn]

eλa
≤ e−a2/2n

Remark 6 This also gives the central limit theorem by taking a = α
√
n and do the integral.

lim
n→∞

[Sn ≥ α
√
n] =

∫ ∞

α

1√
2π

ex
2/2 dx

Remark 7 The Chernoff bound as well as the broader field, concentration theory, contains certain

amplification from polynomial entities to a exponentially small bound. This amplification can lead

to incredible results, including the Nisan-Wigderson pseudorandom generator.

10

A variant to Xi ∈ {0, 1}, where Pr[Xi = 1] = pi, Pr[Xi = 0] = 1− pi, goes

Corollary 1 Let p =
∑

pi/n, Sn =
∑

Xi − pn For ∆ > 0,

Pr[Sn ≥ ∆] ≤ e−2∆2/n

B Preliminary Abstract Algebra [Gal21]

Definition 7 (Group) Group G is a set S with a binary operation (a function on S × S → S,

usually denoted with ab) with three properties:

• Associativity: (ab)c = a(bc)

• Identity: ∃e ∈ S, ea = ae = e

• Inverses: aa−1 = a−1a = e

Abelian Group satisfies an additional property:

• Commutativity: ab = ba

Example: Common Groups:

• Zn with addition mod n, whose identity is 0, inverse is n− j for j > 0

• GL(2, R) =

{(
a b

c d

) ∣∣∣ a, b, c, d ∈ R, ad− bc ̸= 0

}
with matrix multiplication, whose identity

is

(
1 0

0 1

)
.

– This non-Abelian group is called generalized linear group of 2× 2 matrices over R.
– Notice that the determinant has to be non-zero; otherwise, the matrix does not have

inverse.

• U(n) = {a | gcd(a, n) = 1, a ∈ Z∗
n} with multiplication modn is an Abelian group, whose

identity is 1, inverse exists and is (by definition) the solution to ax mod n = 1

– If n is prime, then U(n) = Z∗
n

– The existence of the multiplicative inverse is due to Euler, proving that gcd(a, b) = 1⇔
ab mod n = 1

⊠

Definition 8 (Order) Order of the group |G| is the number of elements in the group G.

Order of the element g ∈ G is the smallest positive number n such that gn = e.

Definition 9 (Subgroup) Subgroup H ≤ G iff H is a subset of G and is closed under the operation

of G

11

Definition 10 (Ring) Ring R is an extension to Group with two operations (usually called addi-

tion and multiplication), satisfying the following six properties:

• Associativity on Addition: (a+ b) + c = a+ (b+ c)

• Commutativity on Addition: a+ b = b+ a

• Additive Identity: ∃0 ∈ R, a+ 0 = 0 + a = a

• Additive Inverse: (−a) + a = 0

• Associativity on Multiplication: (ab)c = a(bc)

• Distributive Law: a(b+ c) = ab+ ac and (b+ c)a = ba+ ca

Notice that there are three more optional properties for multiplication

• Commutativity on Multiplication: we call it a commutative ring : ab = ba

• Multiplicative Identity: we call it a unity : ∃e ∈ R, ea = a

• Multiplicative Inverse: it must satisfy the above two properties, and we call it units: ∀a ̸=
0, ∃a−1, a−1a = aa−1 = e

Definition 11 (Integral Domain) Integral Domain D is an alias to a kind of ring: commutative

ring with unity and “no zero-divisor”, i.e. ∀a ̸= 0, b ̸= 0, ab ̸= 0

Example: Z is an integral domain

Zp is an integral domain iff p is prime ⊠

Definition 12 (Field) Field F is an alias to a kind of ring: commutative ring with unity in which

every non-zero element is a unit.

Example: Zp is a field iff p is prime

Z[x] = {anxn + · · ·+ a1x+ a0 | ai ∈ Z} is a commutative ring with unity f(x) = 1, but not a

field since f(x) = x has no multiplicative inverse. It is called polynomial rings. ⊠

Theorem 7 Every fields are integral domain

Theorem 8 Every finite integral domains are fields

Theorem 9 If D is an integral domain, then D[x] is also an integral domain. This directly gives

Z[x] is an integral domain.

Theorem 10 If p is prime, then ∀n, GF [pn] is a unique, up to isomorphism, Galois field (an alias

to the finite field) of order pn (i.e. |GF [pn]| = pn). Therefore, GF [pn] is the alias to Z/pn.

12

References

[Cai03] Jin-Yi Cai. Lectures in Computational Complexity. https://pages.cs.wisc.edu/~jyc/

710-draft-book.pdf. [Online; accessed 03-May-2024]. 2003.

[Gal21] Joseph Gallian. Contemporary abstract algebra. Chapman and Hall/CRC, 2021.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs randomness”. In: Journal of computer

and System Sciences 49.2 (1994), pp. 149–167.

13

https://pages.cs.wisc.edu/~jyc/710-draft-book.pdf
https://pages.cs.wisc.edu/~jyc/710-draft-book.pdf

	Overview
	Probabilistic Turing Machine and its Complexity Classes
	Amplification of BPP

	Universal Hashing Function Family
	MAXCUT
	Derandomizing MAXCUT Algorithm using Universal Hashing Function
	Goemans-Williamson Algorithm: An 87.8% Approximation to MAXCUT

	Isolation Lemma
	Sipser–Lautemann Theorem: BPPp22p
	Preliminary Inequalities and Bounds
	Preliminary Abstract Algebra gallian2021contemporary

