
CS 710: Complexity Theory Date: Feb. 20th, 2024

Lecture 9: Oracles, Polynomial Hierarchy, BGS Theorem, and Circuits∗

Instructor: Jin-Yi Cai Scribe: Hao Lin

1 Review

We have introduced oracles and polynomial hierarchy in the past two lectures.

The motivation is that although we already know NP ⊆ PSPACE, we still have no idea if this is

a proper containment, or say are there any other complexity classes in between which can separate

NP from PSPACE?

• one of the most common concern in complexity theory is to ask whether we can separate class

A from class B

Therefore, we want to discover (hopefully) more powerful complexity classes by adding more

capabilities to the computation model, just as what we have seen the birth of the non-deterministic

Turing machine with the magical parallel universe capability. And here comes the oracle and

quantifier-based Turing machine.

1.1 Oracles, Relativization

Definition 1. Oracle is simply a set with strings, but when Turing machine M is equipped with

an oracle, it can ask the oracle A with queries in the form of ”is string x ∈ A, and the oracle will

”magically” always reply the correct answer instantly. This procedure is called the relativization,

and the new computation model is denoted as MA.

Example: Let us take oracle A to be super powerful set in PSPACE-complete, let us say the

quantifier boolean formula (QBF):

F = ∃X1∀X2∃X3 . . . QkXk[f(X1, X2, X3, . . . , Xk)]

where Qk = ∃ if k is odd, otherwise Qk = ∀, X1, X2, . . . , Xk ⊆ X is a partition of variables set X,

f is the boolean formula. Deciding whether F = 1 is a PSPACE-complete problem.

Then, a P Turing machine equipped with it, can easily solve any problem in PSPACE since

it simply ask this oracle A, whether the input is in it, and if the answer is ”yes”, it accepts, and

rejects if it’s ”no”.

∗Andrew Yao’s work on Separating Polynomial Hierarchy from PSPACE using Oracle is not covered here.

1

But since it can ask at most polynomial queries (since it is a P machine, the path cannot be

super-polynomial), it is expected to have a chance to show more power than the corresponding

PSPACE Turing machine. However, this strict relationship is yet not known. ⊠

1.2 Polynomial Hierarchy

Next, we add quantifiers to the vanilla Turing machine.

Definition 2.

Σp
k = {x | ∃py1,∀py2, . . . , QpykD(x, y1, y2, . . . , yk) = 1}

where k ∈ N, Qk =

{
∃p k is odd

∀p k is even
, D is a polynomial computable predicate,

∃py = ∃y : |y| ≤ p(|x|),

∀py = ∀y : |y| ≤ p(|x|),

specifically, Σp
0 = {x | D(x) = 1}.

Definition 3. The counterpart is defined for the complement languages in Σp
k,

Πp
k = {x | ∀py1, ∃py2, . . . , QpykD(x, y1, y2, . . . , yk) = 1}

with the same definition as Σp
k, except branches in Qk are altered.

We would show that a decision problem is easily captured by the Πp
2 complexity class, to imply

that we may define a harder complexity class than NP, however this is just a belief not a proof.

Example: We want to decide whether a boolean formula is the most succinct, which is called minimal

equivalent expression (MEE). For a formula φ, being the most succinct means that ∀ψ∃σ, |φ(σ)| >
|ψ(σ)|. This decision problem is simply the definition of Πp

2. ⊠

Proposition 1. It is easy to see that Σp
0 = Πp

0 = P, since we can take a polynomial deterministic

Turing machine that accepts input x in polynomial time, and in return take those accepted input

as the language Σp
0.

Proposition 2. It is less obvious but still directly from the definition that Σp
1 = NP, since we

can take a NDTM that accepts x in polynomial time as long as there exists a path y with length

bounded by p(|x|), and in return take those accepted input as the language Σp
1.

Proposition 3. By using the ”guess, delay and verify” technique (which will be shown in the next

section), we are able to prove that Σp
2 = NPNP.

Here we give the quantifier-based definition for polynomial hierarchy.

2

Definition 4. Polynomial hierarchy (PH) is defined as the union of all Σp
k.

PH =
⋃
k

Σp
k

Corollary 1.

PH =
⋃
k

Σp
k =

⋃
k

Πp
k

Proof. Since Σp
k ⊆ Πp

k and Πp
k ⊆ Σp

k+1, it is clear to see this result.

1.3 The Power of Complement Complexity Class as Oracle is the Same

Before we move on to more hierarchies, we need to take a closer look at the concept and properties

of the complement complexity class.

Definition 5. The complement of language L is denoted as Lc means for any string ω, the following

holds

(ω ∈ L⇒ ω /∈ Lc) ∧ (ω /∈ L⇒ ω ∈ Lc)

Proposition 4. Therefore, we also have (Lc)c = L, and

(ω ∈ Lc ⇒ ω /∈ L) ∧ (ω /∈ Lc ⇒ ω ∈ L)

Proof. If L can be decided by a Turing machineM , then there exists a complement Turing machine

M c gives an opposite answer. Specifically, M c can decide Lc in such a way that: for any input

x ∈ L, if M accepts it, then M c rejects it; if M rejects it, then M c accepts it.

Corollary 2. For complexity class NP, we have any language L,

L ∈ NP ⇐⇒ Lc ∈ coNP

where Lc is the complement of language L, and coNP is the set of all languages decided by any

M c.

We also know for any input x, there exists p a polynomial function andD a polynomial predicate,

such that

x ∈ L⇔ ∃py,D(x, y) = 1

x ∈ Lc ⇔ ∀py, (1−D)(x, y) = 1

Proof. The left hand side is expanded as, a language L belongs to class NP means, for every string

x, there exists a polynomial function p and predicate D, such that

x ∈ L⇔ ∃py,D(x, y) = 1

3

The contrapositive to it is

x /∈ L⇔ ∀py, 1−D(x, y) = 1

and hence

x ∈ Lc ⇔ ∀py, 1−D(x, y) = 1

so we have (p,D) witness L ∈ NP is equivalent (p, 1−D) witness Lc ∈ coNP.

It is trivial that Pc = P, by simply negating the decision of the Turing machine. However, it is

still not known whether coNP = NP, but it is easy to see that P ⊆ coNP∩NP, while whether they

are separated is also an open question.

Theorem 1. For any complexity class C, its complement co-C has the same power as an oracle

when the machine asking the query is at least polynomial computable.

Proof. If asking the oracle C with query string x, if there exists a language L ∈ C such that x ∈ L,

we know from the above that Lc ∈ co-C. We can transform x into a string in Lc in polynomial

time, therefore prove it.

2 Equivalence of Quantifier-based and Oracle-based Definitions of

Polynomial Hierarchy

We have seen that Σp
2 = NPNP, which connects the quantifier-based definition of polynomial hier-

archy with the complexity classes relativized by oracles, so here comes a question to a more general

proposition that can this hold for all k? The answer is yes.

Theorem 2. Σp
k = NPNP. .

.
NP

, where there are k NP on the right hand side.

The theorem states that the alternation of quantifiers is equivalent to asking oracles at the end

of each path. We will prove this theorem with a series of claims. The basic idea is the ”guess, delay

and verify” simulation method.

Definition 6. Operator ∃. is defined as, for any language L, and polynomial computable function

p, we have

∃.L = {x | (∃p)y, ⟨x, y⟩ ∈ L}

where ⟨x, y⟩ is a pairing function which gives a one-to-one correspondence function N×N −→ N,
an example of pairing functions is Cantor pairing function with ⟨x, y⟩ = (x+ y)(x+ y + 1)/2 + x.

Similar definitions for class C and operator ∀.

Claim 1. NPA = ∃.PA, for any oracle A.

4

Proof. ∃.PA ⊆ NPA since by definition of left hand side, for any relativized P machine NPA, to

accept any input x, there exists a decision path y of polynomial length (or say polynomial bounded),

this is exactly the definition of NPA.

On the other hand, for any NPA machine, we will show that NPA ⊆ ∃.PA. The idea is that

asking queries at the end can be simply simulated by a PA machine, so we just need to do an

equivalent transformation to our NPA machine such that all the queries are delayed to the end.

We simply simulate the NPA when there is no query. When there exists a query, simply guess its

answer, and remember this query. At the end, we ask all the queries at once, and verify if all the

guesses to the queries are correct in polynomial time simulation. This method is called ”guess,

delay and verify”.

Now a claim with two quantifiers.

Claim 2. NP∃.PA
= ∃.∀.PA, for any oracle A.

Proof. Let us first show ∃.∀.PA ⊆ NP∃.PA
. We can simply let our NP machine guess a path, and

ask a negation of the question to that for the oracle ∀.PA. This is because Lc ∈ ∀.PA ⇔ L ∈ ∃.PA

proved above (but here is the relativization version). Therefore, we know that the complement of

complexity class as the oracle has the same power.

On the other hand, we want to show NP∃.PA ⊆ ∃.∀.PA. For an NP machine N , with oracle

B ∈ ∃.PA, we want to accept any input x that is accepted by NB, by ∃.∀.PA. To do this, we can

guess (∃.) the path p in N , and the answers bi to queries ωi ∈ B, and some positive answers yi,

such that (∀.) for any negative answer zj , we accept x if the following predicate holds in PA: N

accepts x for all queries with answers bi in the first place; and then check all queries, if bi = 1, then

D(x, yi) holds; if bi = 0, then ¬D(x, zi) holds.

In summary, we now have two claims hold, for any oracle A,

NPA = ∃.PA

NP∃.PA
= ∃.∀.PA

Claim 3. For any oracle A, NPNP. .
.
NPA

⊆ Σp,A
k , where there are k NP on the left hand side.

Proof. The first two claims prove the case for k = 1, 2. If k ≥ 3, by applying claim 1, we have

NPNP. .
.
NPA

⊆ NP∃.PNP
. .

.
NPA

where the number of NP on RHS decrease by 1.

5

By applying claim 2, we have

NPNP. .
.
NPA

⊆ ∀.∃.PNP. .
.
NPA

where the number of NP on RHS decrease by 2.

By apply these two claims alternatively, we prove it.

Claim 4. For any oracle A, Σp,A
k ⊆ NPNP. .

.
NPA

, where there are k NP on the right hand side.

Proof. We prove by induction, let us assume this holds for k− 1 ≥ 2, we also have the complement

version Σp,A
k−1 ⊆ coNPNP. .

.
NPA

, where there are k − 2 NP.

Since Σp,A
k = ∃.Πp,A

k−1, we have Σp,A
k ⊆ ∃.coNPNP. .

.
NPA

= NPcoNPNP
. .

.
NPA

. As we have proved

the simple version before, we know that the complement class as the oracle has the same power,

therefore NPNP. .
.
NPA

with k − 1 NP can capture Πp,A
k−1, and hence prove it.

These claims together prove the equivalence of polynomial hierarchy between quantifier-based

and oracle-based definitions.

It implies that the super power we have created for oracles is nothing but an alternation of

quantifiers built upon the vanilla Turing machine.

3 BGS Theorem: Why P vs. NP is Hard to Solve?

Here is the Baker-Gill-Solovay Theorem:

Theorem 3. There exists oracle A and B, such that

NPA = PA

NPB ̸= PB

Remark 1. This means there cannot be relativizable proof for either P = NP or P ̸= NP, and

hence the diagnolization method, which is the only powerful tool we have used so far (e.g. for

proving time and space hierarchy theorems) cannot be used to solve P vs. NP problem.

Proof. It is easy to realize that we can just pick an oracle powerful enough to diminish the difference

between P and NP machine. Let us just pick QBF as the oracle, so any question asked by NP

machine can be simply answered by a P machine with one more ∃ quantifier in front of its QBF

oracle, which is still a QBF oracle.

6

For the second statement, the ideas is still the diagonalization method. To separate these two

classes, we need to find a sparse enough set B, such that it contains answers to queries that is not

asked by P but asked by NP based on the intrinsic deficit of P being unable to ask super-polynomial

many queries.

Let us consider a deterministic Turing machine Mi, we want to find a set Bi leading to a wrong

answer for MBi
i on some input, let us say 1n but not for NPBi . Let us find a sufficiently large ni

such that p(ni) < 2ni by its asymptotically increment definition. Therefore, there will for sure have

some questions not being asked by P but asked by NP, let us simply pick any of them, let us say

ωi, and diagonalize it:

If the answer for ωi by M
Bi
i (1n) is 1, then we don’t add ωi in Bi, otherwise we add it.

For the rest of the queries, we simply don’t add them to Bi, so Bi is super sparse, but enough

to prevent Mi from being of the same power as any in NPBi .

Then, we simply generalize this to all p Turning machines using another diagonalization. Let us

enumerate all p Turing machinesMi with their ni in ascending order, and each one with a oracle set

Bi as described above except that every simulation is based on Bi−1, and Bi = Bi−1 if Mi accepts;

Bi = Bi−1∪{ω} otherwise, so each Turing machine we only add at most one element incrementally

to Bi, and then we get B = ∪iBi, which is sparse but enough to separate PB from NPB on input

1n.

4 Circuits

As we have seen from the BGS theorem, there is no way for us to distinguish P and NP if the proof

can be relativized. Therefore, we need to seek other computation model.

We know that Turing machine cannot decide halting problems, as we can simply use diago-

nalization method to prove it. However, we have found that we can capture the halting problem

using another model called circuit families, which may give a tool to solve the P vs. NP problem,

bypassing the curse of relativization shown by the BGS theorem.

Definition 7. Boolean circuit Cn is a directed acyclic graph (DAG) with n input nodes as the

boolean variables, and m boolean operations to connect some nodes with an output value assign to

them, and the last node gives boolean value to this circuit. Here we usually constrain the boolean

operations to be ¬, ∧ and ∨.

The size of the boolean circuit is the number of nodes |V | in this DAG. The depth of the circuit

is the longest path from the input node to the output node.

Circuit families is the the set of such circuits with all input sizes, C = {Cn}∞n=0.

Proposition 5. Boolean circuit families can capture the halting problem.

Proof. We can have a super sparse set containing only 1n to indicate the halt condition where

7

n is asymptotically super large, say n = 22
k
, so it is not computable, whereas the empty set for

non-halting case, but we can have a simple circuit families with Cn = (x1∧x1)∨(x1∧x2∧. . . xn).

Let us now take a look at the parity function and to see that a problem can be captured by

different circuit families.

Definition 8. Parity function is defined as follows:

⊕(x1, x2, . . . , xn) =

{
1 there are odd number of 1

0 otherwise

Proposition 6. This function can be captured by a depth 2 unbounded fan-in circuit families,

with a CNF and DNF of an exponential size O(2n).

Proposition 7. By applying divide and conquer, we can capture this function with circuit families

with fan-in of 2, depth of O(log n), and a linear size of O(n).

Proof. The proof is simply using the master theorem. We have the recursive equation T (n) =

2 × T (n/2) + O(1), since we can divide the equations into two equal sizes and calculate them

recursively, and then combine them with a single boolean operator.

We would like to ask that can we find a constant depth, unbounded fan-in and polynomial size

circuit families (called AC0) for this parity function. The answer is no but the proof is beyond the

scope here.

Why are we caring about the existence of such kind of circuit families? There is a connection

between P vs. NP problem and the size, depth of the circuit. It is easy to see that any P problem

can have a polynomial size circuit families, however, if we are able to prove the lower bound of the

circuit families of a NP-complete problem is super-polynomial, then we are able to separate P and

NP.

There is also an open question whether we can separate PH from PSPACE, where we have the

similar intent using different size of circuit to distinguish them.

References

[1] Jin-Yi Cai, Draft Book on Complexity Theory. 2003 http://pages.cs.wisc.edu/~jyc/

710-draft-book.pdf

[2] Terrance Tao, P=NP, relativisation, and multiple choice exams. 2009 https://terrytao.

wordpress.com/2009/08/01/pnp-relativisation-and-multiple-choice-exams/

[3] MIT 6.841/18.405J: Advanced Complexity Theory. 2002 https://people.seas.harvard.edu/

~madhusudan/MIT/ST02/scribe/lect02.pdf

8

http://pages.cs.wisc.edu/~jyc/710-draft-book.pdf
http://pages.cs.wisc.edu/~jyc/710-draft-book.pdf
http://pages.cs.wisc.edu/~jyc/710-draft-book.pdf
http://pages.cs.wisc.edu/~jyc/710-draft-book.pdf
https://terrytao.wordpress.com/2009/08/01/pnp-relativisation-and-multiple-choice-exams/
https://terrytao.wordpress.com/2009/08/01/pnp-relativisation-and-multiple-choice-exams/
https://terrytao.wordpress.com/2009/08/01/pnp-relativisation-and-multiple-choice-exams/
https://terrytao.wordpress.com/2009/08/01/pnp-relativisation-and-multiple-choice-exams/
https://people.seas.harvard.edu/~madhusudan/MIT/ST02/scribe/lect02.pdf
https://people.seas.harvard.edu/~madhusudan/MIT/ST02/scribe/lect02.pdf
https://people.seas.harvard.edu/~madhusudan/MIT/ST02/scribe/lect02.pdf
https://people.seas.harvard.edu/~madhusudan/MIT/ST02/scribe/lect02.pdf

	Review
	Oracles, Relativization
	Polynomial Hierarchy
	The Power of Complement Complexity Class as Oracle is the Same

	Equivalence of Quantifier-based and Oracle-based Definitions of Polynomial Hierarchy
	BGS Theorem: Why P vs. NP is Hard to Solve?
	Circuits

