
CS 710: Complexity Theory Date: Jan. 30th, 2024

Lecture 3: Hierarchy Theorems

Instructor: Jin-Yi Cai Scribe: Hao Lin

1 Outline

Prior lecture covers several related topics:

• a 2-tape DTM simulation for any K-tape DTM in O(T (n) log T (n)) time

• definition of complexity classes: P, NP, DTIME, NTIME, DSPACE, NSPACE

In this lecture, we will discuss

• does there exist new problems if we make our complexity classes a little harder: Hierarchy
Theorem, especially deterministic versions and non-deterministic space version

• what is the relationship between deterministic and non-deterministic complexity classes, space
and time complexity classes: notably Savitch’s Theorem

• can we find any completeness in space complexity by reducing specific space-bounded com-
plexity class to a specific problem: determinisitic space reduction

2 Deterministic Hierarchy Theorem

Although we have defined many complexity classes such as P, NP, NSPACE[log n], we haven’t
investigated their relationship much yet. There exists many questions yet to be solved, for instance,
as a constant will not influence the set size of complexity classes (e.g. DTIME[f(n)] = DTIME[c ·
f(n)], ∀c > 0), how much should we scale the function f such that we can have a larger complexity
class? Or, even more fundamental, is that guaranteed to have such a new larger complexity class?
The existence of such a hierarchy in complexity classes should be as of similar interesting as the
existence of a Turing machine (or say an algorithm according to Turing-Church Thesis) for any
problem.

The answer is yes to the latter problem, which is formulated as the Hierarchy Theorem.

Theorem 1. (Deterministic Space Hierarchy Theorem) If S2(n) is fully space-constructible func-
tion, and S2(n) ≥ log n, and

lim
n→∞

S1(n)

S2(n)
= 0

then DSPACE[S1(n)] ⫋ DSPACE[S2(n)].

Proof. This is a weaker version which is proved by diagonalization method, with loss of minor
technical details (the complete theorem relax the condition that fully space-constructible can be
replaced by (partially) space-constructible, and the lower bound for S2(n) is unnecessary). The
rows are the enumeration of TM Mi; the columns are the input sj .

1

First, we construct a TM M̂i which simulates the TM Mi where the space it uses for every input
of length n is S1(n). As we know the simulation will not only add a constant factor to the space
complexity, so M̂i uses O(S1(n)) = o(S2(n)) spaces. Then, to use exactly S2(n) spaces, it just
marking the rest cells on the tape, so the language L̂ simulated by M̂i follows L̂ ∈ DSPACE[S2(n)].

Second, we ask all the M̂i acting on input x doing the opposite: M̂i rejects x if Mi accepts x,
and vice versa.

Finally, according to the diagonalization method, we know there exists an M̂i whose simulated
language L̂ does not belong to the DSPACE[S1(n)], so L̂ ∈ DSPACE[S2(n)]−DSPACE[S1(n)]. To
be more specific, we can find such M̂ doing the opposite as mentioned on input si when simulating
Mi, so we cannot find any Mk of S1(n) space to have the same behavior as M̂ but has S2(n) space
usage.

Theorem 2. (Deterministic Time Hierarchy Theorem) If T1(n), T2(n) are fully time-constructible
functions, and T1(n) ≥ n, T2(n) ≥ n, and

lim
n→∞

T1(n) · log T1(n)

T2(n)
= 0

then DTIME[T1(n)] ⫋ DTIME[T2(n)].

Proof. For its counterpart, the time hierarchy, the proof is similar except for the major difference is
the first stage, the simulation stage, takes a higher complexity order, could be quadratic if simulated
by 1-tape DTM. Luckily, we have the 2-tape DTM simulation with O(T log T), so we have a denser
hierarchy, though sparser than the space hierarchy.

3 Savitch’s Theorem & NSPACE [log n] “is” GAP

Proposition 1. ∀c > 0,

DTIME[T (n)] ⊆ NTIME[T (n)] ⊆ DSPACE[T (n)]

NSPACE[S(n)] ⊆ DTIME[cS(n)]

NTIME[T (n)] ⊆ DTIME[cT (n)]

Here comes the Savitch’s Theorem, a non-trivial but important missing puzzle that bridges
the space complexity classes between deterministic and non-deterministic circumstances, with a
quadratic more space for DTM simulation.

Definition 1. Graph accessibility problem (GAP) is to test whether there is a path from s to t,
given a directed graph G = (V,E) over n nodes.

Lemma 1. GAP can be decided in O(log2 n) space.

Proof. We design a recursive algorithm to test given a node w as the potential middle point of the
path from s to t, can w reach both points within [t/2] steps. If after iterating of all nodes w, we
cannot find one, it leads to a rejection of the problem; otherwise, we can claim we find a path.

The problem is inherently recursive by dividing it into two sub-problems of half size. Specifically,
the algorithm named REACH(u, v, t) calls REACH(u, x, t/2) and REACH(x, v, t/2) for every node
x. Each call takes O(log n) space since it only needs to record several variables u, v, t, x, each is
written into log n bits in a binary setting. And the depth of the whole recursive call is O(log n), so
in total we need to spend O(log2 n) space.

2

Theorem 3. (Savitch’s Theorem) If S(n) ≥ log n and is fully space-constructible, then

NSPACE[S(n)] ⊆ DSPACE[S2(n)]

Proof. The proof is done by translating the general problem into a GAP.
Let M be an NDTM uses O(S(n)) space. Our goal is to simulate it with a DTM M ′ using

O(S2(n)) space.
We establish a GAP that V is the configuration graph of M on an input x, which has 2O(S(n))

nodes, E is the transition from one configuration to the next configuration (defined by the transition
relation of M), and the output is whether any of the final configuration (q ∈ qterminal) is reachable
from the the initial configuration.

This GAP can be solved deterministically in O(log2(2O(S(n))) = O(S2(n)).

Definition 2. A language B is NL-complete if B ∈ NL, and for any language A ∈ NL, there is a
deterministic Turing machine M that uses O(log n) space such that, for any x, x ∈ A ⇐⇒ M(x) ∈
B.

Definition 3. We call this reduction from A to B a logspace reduction.

Corollary 1. GAP is NL-complete.

Proof. From the proof of Savitch’s Theorem, we have constructed a GAP for any language in
NL.

This shows that we can treat NL as a GAP without loss of generality.

4 Non-deterministic Space Hierarchy Theorem

As for NDTM, we are able to come up with a much denser hierarchy for space, compared to DTM.

Lemma 2. (Translational Lemma) Let S1(n), S2(n), and f(n) be fully space-constructible, and
S2(n) ≥ n, f(n) ≥ n. If NSPACE[S1(n)] ⊆ NSPACE[S2(n)], then

NSPACE[f(S1(n))] ⊆ NSPACE[f(S2(n))]

Proof. Let L1 ∈ NSPACE[S1(f(n))] defined by M1.
For any input x that is accepted by M1 in space S1(f(|x|)), we pad the input with # to be

x## . . .##, where there are f(|x|) − |x| many padding character # (which is of in total f(|x|)
length), we define L2 to be all these padded strings. Therefore, L2 ∈ NSPACE[S1].

Since NSPACE[S1(n)] ⊆ NSPACE[S2(n)], we have L2 ∈ NSPACE[S2].
Apply f(n) as the parameter to both results, we have L1 ∈ NSPACE[S2(f(n))].

Theorem 4. If ϵ > 0 and r ≥ 0, then

NSPACE[nr] ⫋ NSPACE[nr+ϵ]

3

Proof. Considering the dense nature of rational number, we can find s and t such that r ≤ s/t <
(s+ 1)/t ≤ r + ϵ, so we only need to prove its rational version

NSPACE[ns/t] ⫋ NSPACE[n(s+ 1)/t]

We prove by contradiction.
Suppose NSPACE[n(s + 1)/t] ⊆ NSPACE[ns/t], then with translational lemma, take f(n) =

n(s+i)t, we have
NSPACE[n(s+1)(s+i)] ⊆ NSPACE[ns(s+i)], ∀i = 0, 1, . . . , s

Also, for i ≥ 1, s(s+ i) ≤ (s+ 1)(s+ i− 1), we have

NSPACE[ns(s+i)] ⊆ NSPACE[n(s+1)(s+i−1)]

Taking these two results alternatively, we have

NSPACE[n(s+1)(2s)] ⊆ NSPACE[ns(2s)]

⊆ NSPACE[n(s+1)(2s−1)] ⊆ NSPACE[ns(2s−1)]

⊆ . . .NSPACE[ns2]

However, by Savitch’s Theorem, NSPACE[ns2] ⊆ DSPACE[n2s2], and we also have DSPACE[n2s2] ⫋
DSPACE[n2s2+2s], and DSPACE[n2s2+2s] ⊆ NSPACE[n2s2+2s].

So, we have a contradiction that NSPACE[n2s2+2s] ⫋ NSPACE[n2s2+2s].

4

